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Large-eddy simulations were carried out to simulate laboratory-scale isolated buoyant
convection in unstratified water with shelf and slope topography in the presence of
rotation and to compare and complement the experimental study of Jacobs & Ivey
(1998) under the same conditions. The simulation code developed in this work was a
three-dimensional incompressible Navier–Stokes solver and the simulation runs were
performed on a distributed memory massively parallel computer, namely the IBM
SP2, to study the effects of different applied heat fluxes and system rotation rates. We
are able to show for the first time the detailed temporal evolution and spatial structure
of the three-dimensional convective flow field. Rayleigh–Bénard instability in the form
of circular concentric convective rings is recognized in the initiation process of the
convection. The onset of Rayleigh–Bénard instability was investigated and the critical
Rayleigh number was found to increase with Taylor number only when the Taylor
number is greater than 5×103, where both non-dimensional parameters are based on
the conductive layer thickness. The horizontally axisymmetric convective rings later
break down and evolve into a quasi-two-dimensional vortex field. An azimuthal rim
current develops around the periphery of the convective region. Our simulation results
confirmed that the rim current velocity scales as Bt1/2/Hf3/2. Here B is the buoyancy
flux applied over a bottom circular disk, f is the Coriolis parameter, t is the time
and H is the distance between the tank bottom and the shelf. With increasing lateral
temperature gradient the rim current undergoes a baroclinic instability. Our study of
root-mean-square velocities in the convective region suggests that the transition from
the buoyancy-flux-controlled to background-rotation-controlled flow occurred when
the natural Rossby number Ro∗ became smaller than a critical value between 0.015
and 0.044. The simulation results of the convective overturning time, the wavelength
of the baroclinic eddies and the density anomaly at steady state are all in reasonable
agreement with the experimental data.

1. Introduction
Thermal convection in rotating fluids is important in many geophysical and engin-

eering situations. Turbulent, rotating, convective flow arises when intense cooling at
the ocean surface occurs in places such as the Gulf of Lions in the Mediterranean
and some areas of the polar seas, namely the Greenland Sea, the Labrador Sea and
the Weddell Sea. Turbulent convection in the open ocean plays a central part in
determining global climate due to its role in the transport of surface water to deep
locations and ultimately in the large-scale thermohaline circulations. Early work on
deep ocean convection has been reviewed by Killworth (1983). More recent field
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studies (Schott & Leaman 1991 and Schott, Visbeck & Fischer 1993) have reported
direct observations of deep ocean convection events. However, there are very few
observations of convective events which allow an identification of the structure and
scales of the flow (Schott et al. 1993). Therefore, much of the understanding of
the turbulent convection process continues to come from laboratory and numerical
studies. During the past four decades, numerous analytical works, laboratory studies
and numerical simulations have been performed on this subject.

The importance of rotation and its effect on the modelling of the relevant turbulent
processes have been studied experimentally by Golitsyn (1981), Boubnov & Golitsyn
(1986, 1990), Brickman (1995), Fernando, Boyer & Chen (1989), Fernando, Chen
& Boyer (1991), Maxworthy & Narimousa (1994), Coates & Ivey (1993, 1997),
Coates, Ivey & Taylor (1995), Narimousa (1997), and Jacobs & Ivey (1998, 1999).
The laboratory investigations were supported by numerical modelling efforts. The
numerical modelling study of deep ocean convection was initially done by Madec et
al. (1991). They parameterized the convective processes and used a hydrostatic model
to focus on the dynamics of the large-scale flow driven by the vertical convection.
Since the turbulent convection process is non-hydrostatic by nature, numerical studies
using non-hydrostatic models but constant eddy viscosity have been carried out
by Brugge, Jones & Marshall (1991); Jones & Marshall (1993); Send & Marshall
(1995); Sander, Wolf-Gladrow & Olbers (1995); Visbeck, Marshall & Jones (1996);
Klinger, Marshall & Send (1996) and Denbo & Skyllingstad (1996). As Maxworthy
& Narimousa (1994) point out, the choice of turbulent parameterization is critical
in making quantitative comparison of numerical and laboratory models. Field-scale
large-eddy simulation (LES) of non-hydrostatic models were performed by Raasch
& Etling (1991); Garwood, Isakari & Gallacher (1994) and Noh, Jang & Kim (1999).
In their studies, Raasch & Etling used a k–ε type eddy viscosity closure, while Noh et
al. used a Smagorinsky eddy viscosity closure. In their simulations, the computational
domain is in the 1.2 to 48 km range and the horizontal grid size is in the 20 to
250 m range. Legg & Marshall (1993) and Legg, Jones & Visbeck (1996) developed a
point-vortex heton model and used it to study localized ocean convection.

The two common difficulties with previous LES studies are insufficient grid resol-
ution and inadequate turbulence models. The advent of massively parallel processing
and the extensive efforts that have been put into the development of new large-eddy
simulation models provide the possibility of performing large-scale computations
of turbulent flows for complex geometries. Since three-dimensional numerical simu-
lations reproduce many important characteristics of turbulent flows and allow one to
extract information which cannot be easily obtained from laboratory experiments or
field observations, the objective of this study was to conduct a large-eddy simulation
to compare with and to complement the experimental study of Jacobs & Ivey (1998)
in investigating the fundamental mechanisms of a turbulent rotating convective flow.
The two fundamental features of our work are: (i) an extensive grid resolution study
leading to resolution of all important features of the flow field and (ii) implementation
of a subgrid-scale turbulence model in the LES that is known to properly characterize
the flow (Zang, Street & Koseff 1993; Salvetti & Banerjee 1995 and Piomelli 1999).

In the course of the grid study, we realized that the early stage of the convective
flow in this study relates to Rayleigh–Bénard convection, which was not the focus of
Jacobs & Ivey’s (1998) experimental study. Rayleigh–Bénard convection has been the
subject of numerous analytical and experimental studies. In 1900, Bénard performed
the first systematic experimental investigation of convection in a shallow fluid layer
heated from below. The basic theoretical study of convection caused by heating from



Large-eddy simulation of turbulent rotating convective flow 55

below was pioneered by Rayleigh (1916). The topic of the onset of thermal instability
in horizontal layers of fluid heated from below with and without rotation about a
vertical axis is discussed in the second and third chapters of Chandrasekhar (1961).
Some laboratory studies of rotating Rayleigh–Bénard convection have been done
by Nakagawa & Frenzen (1955), Koschmieder (1966) and Rossby (1969). Then, for
about three decades, the experimental studies were mostly neglected until Boubnov
and Golitsyn started a series of systematic experimental studies of the convection in
a horizontal convective layer (see Boubnov & Golitsyn 1986, 1990).

Two recent books by Koschmieder (1993) and Boubnov & Golitsyn (1995) describe
the impressive progress that has been made in the theoretical and experimental
investigations of Rayleigh–Bénard convection and convection in rotating fluid. Three-
dimensional numerical simulations of Bénard-like convection in a rotating frame have
been performed by Somerville & Lipps (1973) and Hathaway & Somerville (1983).
A direct numerical simulation of laminar and turbulent Benard convection with
64× 322 grid points has been done by Grötzbach (1982). To the authors knowledge,
no numerical simulation work has been devoted to studying the critical values of onset
of Rayleigh–Bénard instability, such as the critical Rayleigh number, the number of
rings formed, etc. One possible reason is the large number of grid points needed
in the simulation to resolve the small-scale flow structures. Since the corresponding
experimental study of Jacobs & Ivey (1998) did not study the early stage of their
rotating convective flow and no theoretical results can be directly applied to their
flow, it is worth studying some questions, such as the rotation effect on the critical
Rayleigh number, the time of the formation of the convective rings and the number
of rings formed, etc., with our simulation effort. Because deep convection in the
ocean is usually a transient phenomenon, our simulation can provide insight into the
development of the turbulent rotating convective flow there.

The remainder of the paper is organized as follows. The flow configuration used
in the simulations is described in § 2. The governing equations, numerical method
and the initial and boundary conditions for the simulations are presented in § 3. The
simulation results are presented in § 4. Conclusions are given in § 5.

2. Flow configuration
Large-eddy simulations are carried out in the present study to complement an

experimental study of Jacobs & Ivey (1998). Their laboratory-scale experiments were
conducted at the University of Western Australia to model the turbulent convection
processes in an ocean driven by the energetic cooling at the ocean surface. In their
experiment, the flow was inverted for experimental convenience so that heating at
the bottom is used to drive the convective, rotating flow. All the experiments were
conducted using water. Figure 1 is a schematic of the cross-section of the experimental
apparatus. The experiments were conducted in a circular Perspex tank of radius
Ro = 0.48 m. The circular tank was surrounded by a slightly larger outer tank, with
the volume between the two tank walls filled with water at the same temperature
as the water in the working section. The tank was fitted with a false bottom with
built-in circular copper plate of radius Ri = 0.2 m that acted as a heat exchanger.
The copper plate formed the upper surface of a heat exchanger and could be heated
by pumping hot fluid from a constant temperature bath through a circuit of pipes
built into the copper plate. The plate was insulated on the sides and the bottom, so
that heat could only escape through the top surface. The heat flux Q was determined
by measurements of the volume flow rates and temperature drop of the heated fluid
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Figure 1. A schematic of the cross-section of the experimental apparatus.

passing through the heat exchanger. According to Jacobs & Ivey (1998), the heat
flux Q could be determined with an accuracy of about 6%, and errors in the values
of buoyancy flux are up to 10%. The tank top was closed with a model of a shelf
and slope with an angle α = 28◦ commencing at the same radius as the edge of the
heated area. The top lid consists of a cellular Perspex construction with air sealed in
the interior, which is an adequate insulator. The distance H between the tank bottom
and the shelf was varied between experiments and had values of 0.04 m and 0.08 m.
The entire assembly was mounted on a rotating table, revolving counter-clockwise
about the vertical axis at a constant rate Ω. Details of the experimental apparatus
can be found in Jacobs & Ivey (1998). The flow configuration in present simulation
is exactly the same as their experiment except that a small cylinder of 0.02 m radius
(Rh) was cut from the numerical domain to eliminate the coordinate singularity at
the centre for the numerical simulation.

3. Governing equations and numerical method
3.1. Governing equations

The governing equations in the present study are the grid-filtered continuity, Navier–
Stokes and scalar transport equations under the Boussinesq approximation:

∂ūj

∂xj
= 0, (3.1)

∂ūi

∂t
+
∂F̄ij

∂xj
= S̄i, (3.2)

∂T̄

∂t
+
∂R̄j

∂xj
= 0, (3.3)

where

F̄ij = ūiūj + p̄δij − ν ∂ūi
∂x̄j

+ τij , (3.4)

S̄i = −gβ(T̄ − T0)δi2 + f(−ū3δi1 + ū1δi3) + Ω2(xi − δi2x2), (3.5)

R̄j = ūjT̄ − κ∂T̄
∂xj

+ χj. (3.6)
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In the above equations, a variable with an overbar indicates a grid-filtered quantity,
t is the time, ui (i = 1, 2, 3) are the Cartesian velocity components in the directions
(x1, x2, x3), where x1 and x3 are the horizontal coordinates and x2 is the upward
vertical direction, p̄ is the pressure, g is the gravitational constant, Ω is the system
rotation rate, f = 2Ω is the Coriolis parameter, T is the temperature, T0 is a
reference temperature, β is the thermal expansion coefficient, and ν(= 10−6 m2 s−1)
and κ represent, respectively, the kinematic viscosity and thermal diffusivity of the
fluid. The ratio ν/κ is the Prandtl number Pr, which is equal to 7 in this work where
water is the working fluid. The Einstein summation rule applies to all the terms of
the above equations.

The filtered governing equations (3.2) and (3.3) contain subgrid-scale terms τij and
χj , which are defined as

τij = uiuj − ūiūj , (3.7)

χj = ujT − ūjT̄ . (3.8)

These two subgrid-scale quantities are modelled using the dynamic mixed subgrid-
scale model described in Zang et al. (1993), which is able to calculate the model
coefficient locally using the resolved quantities by filtering the governing equations
at two different spatial scales. A local averaging together with a cutoff are used to
prevent numerical instability. Details of filtering and cutoff criteria can be found in
Zang et al. (1993). To test the turbulence model, large-eddy simulations of three-
dimensional isothermal lid-driven cavity flows were carried out to compare with the
experimental study of Prasad & Koseff (1989). The simulation results compare well
with experimentally measured mean, r.m.s. velocity and Reynolds stress profiles in
both the laminar and turbulent flows. In LES the contribution of the large, energy-
carrying structures to momentum and energy transfer is simulated accurately, and
only the effect of the smallest scales of turbulence is modelled. In other words, in
LES the turbulence model only plays a role in places where there are not enough
grid points in the simulation to resolve the smallest scale of the flow. By analysing
the energy dissipation ratio of subgrid-scale dissipation to viscous dissipation in the
rotating convective flow simulation, Cui (1999) demonstrated that the subgrid-scale
dissipation represents only a minor fraction of the total dissipation. Therefore, the
role of the subgrid-scale model is small in this work due to the large number of grid
points used in the present simulation.

3.2. Numerical method

The governing equations are transformed into a generalized coordinate system and
discretized using a finite-volume formulation on a single non-staggered grid. The equa-
tions are discretized in time with a semi-implicit scheme with the Crank–Nicholson
method for the diagonal viscous and diffusive terms and the Adams–Bashforth method
for all the other terms. All the spatial derivatives are approximated with second-order
central differences with the exception of the convective terms, which are handled
with accurate upwind-difference schemes. The convective terms in the momentum
equation are discretized using quick (Leonard 1979) and the convective term in the
scalar transport equation is discretized using sharp (Leonard 1988).

The fractional-step, non-staggered solution technique of Zang, Street & Koseff
(1994) is used to advance the discretized equations in time. An estimate of the
velocity field is obtained with a third-order-accurate factorization by solving the
momentum equation with the pressure term omitted. Continuity is then enforced by
solving a pressure Poisson equation with a multi-grid method. Zang et al. (1994),
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Case Grid (Nr ×Ny ×Nθ) Ω(rad s−1) B × 106(m2 s
−3

) Ro∗

Run 1 352× 128× 256 0.2 1.57 0.124
Run 2 352× 128× 256 0.0 1.57 0.124
Run 3 352× 128× 256 0.1 1.57 0.350
Run 4 352× 128× 256 0.4 1.57 0.044
Run 5 352× 128× 256 0.8 1.57 0.015
Run 6 352× 128× 256 0.2 3.14 0.175

Table 1. Grid resolutions and physical parameters of the simulations.

Zang & Street (1995) and Yuan, Street & Ferziger (1999) showed the quantitative
accuracy of the numerical schemes for laboratory scale simulations.

The numerical code was implemented on a distributed-memory, massively-parallel
computer – the IBM SP2, using the message passing interface (MPI). Details of
the code implementation can be found in Cui & Street (2000). A code performance
of 38 MFLOPS per node was achieved, which was the reported peak rate in a
retrospective study of codes run on the IBM SP2 at NASA-Ames during a eight-
month period (Bergeron 1998). This parallel code has been validated against a variety
of laboratory-scale flows (Cui 1999), such as lid-driven cavity flow, upwelling flows
and flows induced by source–sink pairs in a rotating stratified fluid.

3.3. Initial and boundary conditions

The working fluid, i.e. pure water, is initially at a uniform temperature Ti and is in
solid-body rotation with the tank. At time t = 0, a constant and uniform heat flux Q is
applied to the bottom central disk. No-slip velocity boundary conditions are imposed
at all solid walls. Except at the bottom central disk, where a constant and uniform
heat flux Q is applied, the temperature boundary conditions for the inner vertical
wall, the top lid and the bottom of the tank are obtained by assuming that those walls
are adiabatic. A constant temperature, equal to the initial temperature Ti, is applied
to the outer vertical wall. The buoyancy flux B can be related to the heat flux Q
through B = gβQ/(ρCp), with the thermal expansion coefficient β = 2.5× 10−4 ◦C−1,

the gravitational acceleration constant g = 9.81 m s−2, the density ρ = 1000 kg m−3

and the specific heat at constant pressure Cp = 4180 J kg−1 K−1.

4. Simulation results
To investigate the effect of rotation and heating on the convection process, a total

of six production runs were performed covering five different angular velocities Ω
and two different buoyancy fluxes B while the geometric parameters were fixed. An
extensive grid resolution study was conducted (Cui 1999) and led to the use of up to
twelve million grid points in the simulation. A summary of the grid resolutions and
physical parameters for our study is given in table 1. Ro∗ in table 1 is the natural
Rossby number introduced by Golitsyn (1980) as Ro∗ = [B/(f3H2)]1/2, which is the
ratio of the rotation time scale to the time scale for turnover of a fully turbulent
convective eddy in a fluid of depth H . Run 1 has the same physical parameters as
experiment number 14 of Jacobs & Ivey’s (1998) experiment. The only difference
among Run 1 to Run 5 is the angular velocity Ω, which is varied from 0 to 0.8 rad s−1.
The difference between Run 1 and Run 6 is that the buoyancy flux B of Run 6 is
twice that of Run 1.
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Figure 2. Velocity profiles at r/Ri = 0.5 and t = 28 s (Run 1).

In order to resolve the small-scale flow structures inside the convective region, a
non-uniform grid is used in the radial direction with grid points clustered in the
constant-height shelf region and then stretching out radially. The grid is uniform in
the vertical and the azimuthal directions. Since the viscous stability limit is removed
by advancing the diagonal viscous terms implicitly, the time step ∆t is then determined
by the Courant–Friedrichs–Lewy (CFL) number

CFL =

( |u1|
∆x

+
|u2|
∆y

+
|u3|
∆z

)
∆t, (4.1)

where ∆x,∆y,∆z are the grid spacings in the three Cartesian coordinates in the
physical domain. The stability condition of the present method requires the maximum
value of the CFL number obtained from (4.1) over the entire computational domain to
be less than one. A fixed time step ∆t = 0.02 s was used so that the CFL number was
always less than 0.75 in our simulation. A step-by-step description of the convection
process is given below. In presenting the results, we employ a right-handed (x, y, z)
system with y being the vertical distance up from the plate. In addition, r =

√
x2 + z2

is the radial coordinate in the horizontal (x, z)-plane.

4.1. Growth of the conductive layer

The water is at a uniform temperature Ti and is initially in solid-body rotation with the
tank. At time t = 0, a constant and uniform buoyancy flux B is applied to the bottom
central disk. A thin thermal layer then forms immediately above the heat source and
grows diffusively with time. The thin thermal layer grows uniformly in the vertical di-
rection except at the outer edge of the heated disk. Due to the discontinuity of the heat
flux applied at the bottom of the tank, some radial momentum and heat exchanges
take place at the outer edge of the heated disk. In figure 2, the velocity profiles, which
are non-dimensionalized by a velocity scale V = (thermal diffusivity κ)/(thermal
layer thickness δ), indicate that all the three velocity components are negligibly small
within the thermal layer and, therefore, that a basic static state of heat conduction
exists. (Note that the actual velocity at the sidewall is zero, but that is not a node
point and is not plotted.) Since molecular conduction dominates inside this thermal
layer, we call it the conductive layer. Temperature profiles in figure 3 show that the
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angular velocity Ω has no effect on the growth of the conductive layer. In addition,
temperature profiles for different buoyancy fluxes B at t = 20 s presented in figure 4
show that the conductive layer thickness does not depend on the buoyancy flux B.
Based on the unsteady one-dimensional heat conduction equation, a dimensionally
correct scale for the conductive layer thickness δ(t) can be introduced as

δ(t) ∼ √κt, (4.2)

where κ is the thermal diffusivity and t is the time. The temperature profiles for Run 1
at different times plotted against the non-dimensionalized vertical distance y/

√
κt are

shown in figure 5. All the curves approach the same non-dimensional thickness value,
suggesting that

√
κt is the correct length scale for the conductive layer thickness.
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Figure 5. Temperature profiles at r/Ri = 0.5 and different times (Run 1).

4.2. Onset of the Rayleigh–Bénard convection

The temperature difference across the conductive layer increases as the layer thickness
increases. When the temperature difference exceeds a critical value ∆Tc, the buoyancy
of the fluid is able to overcome the dissipation caused by the viscosity and thermal
diffusivity of the fluid, the basic static state becomes unstable and the convective
instability, i.e. the Rayleigh–Bénard convection, sets in. The Rayleigh number Raδ is
a non-dimensional measure of the vertical temperature difference across the layer that
is necessary to overcome the dissipative influences of viscosity and heat conduction;
Raδ is given by

Raδ = gβ∆Tδ3/(νκ). (4.3)

The Taylor number Taδ is a non-dimensional measure of the rotation rate of a fluid
layer rotating with angular velocity Ω; Taδ is defined as

Taδ = 4Ω2δ4/ν2. (4.4)

The conductive layer thickness δ, instead of the distance H between the tank bottom
and the shelf, is used here since a fluid particle has travelled only within the distance
δ when Rayleigh–Bénard convection takes place. The onset of the Rayleigh–Bénard
convection can be observed through the formation of circular concentric convective
rings (figure 6). Jacobs & Ivey (1998) did not study the onset of the Rayleigh–Bénard
convection. However, the existence of the convective rings above a uniformly heated
circular plate was observed in experiments reported by Koschmieder (1966) and
Boubnov & Golitsyn (1986). Expanded side views of the velocity and temperature
fields† (figure 7) shows the warm water trapped in the convective rings rising from
the bottom heat source and the cold water descending between them.

Table 2 tabulates the values of the time t, the critical temperature difference ∆Tc,
the corresponding critical Rayleigh number Rac, the layer thickness δ and Taylor
number Taδ when the onset of Rayleigh–Bénard convection occurs for different runs.

† All the side view velocity plots in this paper are plotted at every third point in the radial
direction, at every seventh point in the vertical direction. All the temperature plots in this paper
show the temperature deviation from the initial temperature.
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Case t (s) ∆Tc (◦C) δ (mm) Rac × 104 Taδ

Run 1 35 5.3 7.1 7.1 1.1× 103

Run 2 35 5.3 7.1 7.1 0.0× 103

Run 3 35 5.3 7.1 7.1 0.3× 103

Run 4 35 5.3 7.1 7.1 4.6× 103

Run 5 38 5.7 9.2 8.2 2.1× 104

Run 6 23 8.5 7.7 6.9 1.1× 103

Table 2. Values observed at the onset of Rayleigh–Bénard convection.
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From table 2, the following conclusions can be drawn:
(i) The time for the formation of the convective rings depends on the supplied
buoyancy flux B. It does not depend on the rotation rate Ω when Taδ < 5× 103 and
begins to increase when Taδ > 5× 103 when the other external conditions remain the
same.

(ii) The critical Rayleigh number Rac is essentially constant (Rac ≈ 7 × 104) when
Taδ < 5× 103 and begins to increase with Taδ as Taδ > 5× 103.

Analytical solutions for three combinations of boundary conditions on the bounding
horizontal planes, i.e. the cases of two free boundaries, two rigid boundaries, and one
rigid and one free boundary, are available for the thermal instability of a layer of
fluid heated from below with or without rotation (Chandrasekhar 1961). The book by
Boubnov & Golitsyn (1995) provides the critical Rayleigh number for an additional
six boundary condition sets. Without rotation, the critical Rayleigh number Rac is
found to be a different constant for different boundary conditions. Under the effect
of rotation, Rac increases with the Taylor number Taδ when Taδ is greater than 103.
When Taδ is less than 103, the dependence of Rac on Taδ is not significant. The
present numerical study differs from the analytical work in the following respects:

(i) The boundary conditions imposed on the horizontal planes of the present study
do not fall into any of the nine types of the boundary conditions in the analytical
work.

(ii) In the analytical work, a steady adverse temperature gradient is maintained
within an infinite horizontal layer of fluid. The present numerical results (figure 5)
show clearly an unsteady, nonlinear temperature distribution within the conductive
layer.

Although the numerical result cannot be compared to the analytical result quantita-
tively, the analytical results may serve as a guide to the numerical results. The finding
that the critical Rayleigh number Rac is essentially constant when Taδ < 5× 103 and
increases with Taδ when Taδ > 5× 103 is consistent with the analytical solutions.

4.3. Development of the convective rings

The convective ring development stage in this study refers to the process from the
initial formation of the convective rings near the bottom of the tank to their arrival
at the top shelf. Figures 6, 7 and 8 show the early stage of the convective rings, where
they are mostly uniform. The non-uniformity of the ring patterns near the inner and
outer edges is caused by the adiabatic wall condition and by the discontinuity of heat
flux at the tank bottom, respectively.

In terms of the number of rings observed for different rotation rates and buoyancy
fluxes, it is only reasonable to make comparisons within a region not under the direct
influence of the edges of the heated disk. A distinct ring pattern can be seen for the
radius range from 0.05 m to 0.17 m from figures 8(a) to 8(d). Within that radius range,
the number of rings observed remains 16 (figures 8a and 8b) for the first four cases
with the rotation rate increased from 0 to 0.4 rad s−1. As the heat flux or the rotation
rate further increased (or the Taylor number increased), the number of rings also
increased. Figures 8(c) and 8(d) show 17 rings within the radius range from 0.05 m
to 0.17 m. The above simulation results lead us to reach the following conclusions:
(i) the number of rings formed depends on the buoyancy flux and (ii) the number of
rings starts to increase when Taδ > 5 × 103. The critical wavelength λc is the width
of the layer divided by the number of rings when the critical Rayleigh number Rac
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Figure 8. Side view of the temperature field. (a) t = 40 s for Run 2 (Ω = 0.0 rad s−1,
B = 1.57× 10−6 m2 s−3); (b) t = 40 s for Run 4 (Ω = 0.4 rad s−1, B = 1.57× 10−6 m2 s−3); (c) t = 45 s
for Run 5 (Ω = 0.8 rad s−1, B = 1.57× 10−6 m2 s−3); (d) t = 30 s for Run 6 (Ω = 0.2 rad s−1,
B = 3.14× 10−6 m2 s−3).

occurs. As pointed out by Koschmieder (1993), little work has been devoted to the
measurement of the critical wavelength λc (therefore the number of rings) although
λc is a fundamental feature of Rayleigh–Bénard convection. Boubnov & Golitsyn
(1986) reported that the distance between the rings (r) may vary by 50% in their
experiment even when their experiments were repeated with exactly the same external
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Figure 9. Side view of the temperature field. (a) t = 55 s for Run 2 (Ω = 0.0 rad s−1,
B = 1.57× 10−6 m2 s−3); (b) t = 55 s for Run 4 (Ω = 0.4 rad s−1, B = 1.57× 10−6 m2 s−3); (c) t = 55 s
for Run 5 (Ω = 0.8 rad s−1, B = 1.57× 10−6 m2 s−3).

parameters. They also found that there was a clear dependence of r on the heat flux,
but no dependence on the rotation rate. However, Koschmieder (1967) found that
the number of rings starts to increase with Taδ when Taδ > 105 in their experiment.
Because the experiment carried out by Jacobs & Ivey (1998) did not focus on the
early stages of the convection process, no comparison regarding the number of rings
can be made at this point. However, Ivey (2000, personal communication) advised us
that the video and still pictures obtained from their experiments suggest the existence
of ring patterns for a short time period.

By t = 55 s, the continuing penetration of the rings is evident, and some of them
have already reached the top shelf (figures 9a to 9c). The simulation results in figure 9
show that the horizontal motions are directly affected by the rotation rate. The
horizontal velocity components are more restrained with increasing rotation rate, and
the lateral temperature difference increases near the edges of the heat source with
increasing buoyancy flux; therefore the radial momentum and heat exchanges near the
edges of the heated disk are different for the system under different rotation rates and
subjected to different buoyancy fluxes. As a direct result, temperature distributions
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Figure 10. An iso-thermal surface at t = 140 s for Ω = 0.2 rad s−1, B = 1.57× 10−6 m2 s−3 (Run 1).

near the edges of the heated disk are different from early in the simulation (figures 8a
to 8d). The rings are more deformed in the vertical direction with the decrease of the
angular velocity Ω, resulting in a radially irregular ring pattern. Some blobs of warm
water have already been detached from the rings by t = 55 s at lower angular velocities
(figure 9a). Despite the non-uniform pattern in the vertical and radial directions, the
rings are still axisymmetric in the azimuthal direction.

A comparison of results at t = 55 s for different rotation rates (figures 9a to 9c)
shows that rotation has little effect on the time it takes for the rings to reach the top
shelf, suggesting that the time scale for the ring development stage is approximately
independent of the angular velocity Ω. The present simulation results show that
increasing the buoyancy flux reduces the time for the rings to reach the top shelf; for
example, for Run 6 the time is about 40 s. As suggested by Jacobs & Ivey (1998), the
time scale characterizing the convective ring development stage is given by the time
it takes for a fluid particle with a typical vertical convective velocity (BH)1/3 to travel
over the vertical length scale H:

tv ∼ H/(BH)1/3 = (H2/B)1/3. (4.5)

From table 2, one can see that the time of the onset of the convective instability
for Run 5 is slightly different from that of Run 1 and Run 4 even though Run 1 to
Run 5 have the same buoyancy flux (B), suggesting a possible rotation rate influence.
However, our results show that it takes about the same time for the rings to reach the
same vertical level in Run 1 to Run 5 after the onset of the instability. By observation



Large-eddy simulation of turbulent rotating convective flow 67

–0.22

–0.11

0

0.11

0.22
–0.22 –0.11 0 0.11 0.22

1.32

1.18

1.05

0.92

0.79

0.66

0.53

0.39

0.26

0.13

x (m)

z 
(m

)

Figure 11. Plan view of the temperature field at t = 140 s and y/H = 0.5 for Ω = 0.2 rad s−1,
B = 1.57× 10−6 m2 s−3 (Run 1). The rim of the heated disk is marked by the dashed line.

of the time near the end of the ring development stage for Run 1 and Run 6, the
ratio of the two time scales (tv−Run1 for Run 1 to Run 5 and tv−Run6 for Run 6)
tv−Run1/tv−Run6(= (55–35 s)/(40–23 s) = 1.2) is approximately equal to cube root of the
ratio of the buoyancy flux (B−Run6/B−Run1)1/3(= 1.3), suggesting that tv ∼ (H2/B)1/3

is the correct time scale for the ring development stage within the current angular
velocity range.

4.4. Development of the rim current and generation of the convective cells

As the convective rings reach the top shelf, a column of convective fluid, which is
mainly confined to the volume defined by the heated disk and the top shelf, is formed.
Figure 10 shows that the axisymmetric ring structure still holds at t = 140 s inside the
convective fluid column. At t = 140 s, small wavy perturbations are observed on some
of the convective rings (figure 11). The amplitude of the perturbations grows with time
and the rings have broken into cells by t = 180 s (figure 12). At this time, an inclined
front dividing the heated and ambient fluid has already formed (figure 13a). The
individual elements of the convective cell consist of an ascending core in the middle
surrounded by a cylindrical surface on which descending motions are observed.

One possible explanation of the cause of the breakdown of the rings was given
by Boubnov & Golitsyn (1986) as follows. As shown in figure 7, warm fluid moves
towards the centre of the ring near the bottom and then rises at the centre of the rings
from the bottom of the heated disk. Due to the Coriolis force the fluid at different
sides of the rings is deflected in opposite directions causing a shear instability to
generate the vortices. However, the present simulation results show that vortices
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Figure 12. As figure 11 but at t = 180 s.

are formed with or without rotation. Without rotation, the rings are breaking into
vortices by t = 90 s as opposed to t = 140 s when rotation is present. Thus, the above
explanation is not satisfactory, nor as mentioned by Boubnov & Golitsyn (1986) is
it the only possible cause. In this early stage, the exact geometry does not have any
influence on the development of the convective cells, and this is confirmed by both
the experiments of Jacobs & Ivey (1998, 1999), although these authors only showed
this early stage of their experiment in the flat lid case (Jacobs & Ivey 1999). One
possible reason for the more rapid breakdown of the rings to the individual cells in
the experiment is that the conditions in the laboratory experiment are not as ideal as
in our numerical simulation, e.g. a uniformly heated disk is hard to maintain in the
experiment since the hot water used to heat the disk was pumped in from outside in
a radial flow at time t = 0.

Unlike in Boubnov & Golitsyn’s (1986) experiment, in our simulation all of the
rings appear at the same time and grow at the same rate except near boundaries of
the convective region, which was confirmed by the experiment done by Coates &
Ivey (1993). Their experiment is similar to our simulation’s corresponding experiment
(Jacobs & Ivey 1998). While the exact geometry may not affect the early development
of the rings, the boundary conditions in Boubnov & Golitsyn’s (1986) experiment
are different from those in our simulation and Jacobs & Ivey’s (1998) experiments.
Specifically, in Boubnov & Golitsyn’s (1986) experiment, the heat flux was applied to
the entire bottom of the tank and the sidewalls of the tank were thermo-insulated,
while in Jacobs & Ivey’s (1998) experiment and our simulation, the heat flux was
only applied to a centred circular area with diameter only 42% of the tank diameter
and the sidewalls of the tank were maintaned at a constant temperature. This could
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Figure 13. Side view of (a) temperature field (b) expanded velocity field (the maximum velocity
magnitude is 3.83 mm s−1) at t = 180 s for Ω = 0.2 rad s−1, B = 1.57× 10−6 m2 s−3 (Run 1).

be the major contributing factor to the difference observed in the ring development
stage between our simulation and Boubnov & Golitsyn’s (1986) experiment.

Once the convective fluid reaches the top shelf, it is transported away along the
top slope in a thin layer due to the existence of the adjacent slope, and some radial
adjustments also occur at the bottom of the tank with colder ambient fluid moving
radially in over the heated disk (figure 13b).

The horizontal characteristics of the convective cells (vortices) can be seen from the
horizontal slices of the velocity field† cut at three different vertical levels (y/H = 0.125,
0.5 and 0.875). By t = 180 s, some small-scale convective vortices are clearly visible at
the lower level of the tank (y/H = 0.125) (figure 14) above the heated disk. At this
level, most of the cells are rotating cyclonically. Outward from the heated disk, there
is a quiescent region. Between the two regions, an azimuthal rim current which flows
in a cyclonic direction has already developed. The rim current is perturbed by the
individual vortices. As explained by Coates et al. (1995), the incoming ambient flow
at the bottom of the tank must speed up in order to conserve angular momentum

† All the plan view velocity plots in this paper are plotted at every sixth point in the radial
direction and at every point in the azimuthal direction.
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Figure 14. Plan view of the velocity field at t = 180 s and y/H = 0.125 for Ω = 0.2 rad s−1,
B = 1.57 × 10−6 m2 s−3 (Run 1). The maximum velocity magnitude is 5.68 mm s−1. The rim of the
heated disk is marked by the dashed line.

and hence acquires a cyclonic rotation. The opposite is true for the rim current
at the upper level of the tank. Figure 15 shows that the rim current at the upper
level (y/H = 0.875) indeed flows in the anti-cyclonic direction. Since the rim current
is caused by the system rotation and the conservation of angular momentum, no
rim current should develop when there is no rotation, which is confirmed by our
simulation result of Run 2 (Ω = 0). Figure 15 also shows that the outlines of the
individual convective cells at the upper level are not as clear as those at the lower
level and the vortices now have no preferred direction of rotation. As pointed out
by Nakagawa & Frenzen (1955), the direction of the horizontal circulation of each
cell is that appropriate to the conservation of angular momentum in the divergent or
convergent field. At the mid-height of the tank (not shown here), there is no distinct
rim current and only the general outline of the convective cells can be seen.

By computing the rim current velocity urim at t = 150 s and 200 s for Run 1 and
t = 200 s for Run 4 and Run 5, we found that the magnitude of urim is proportional to
t1/2/f3/2. Since the buoyancy flux B is the same for Runs 1, 4 and 5, a dimensionally
correct velocity scale for urim can be as follows:

urim ∼ Bt1/2

Hf3/2
. (4.6)

We did not compute rim current velocity beyond t = 200 s due to the distortion of
the rim current caused by the baroclinic instability at later times. The rim current
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Figure 15. As figure 14 but at y/H = 0.875. The maximum velocity magnitude is 3.97 mm s−1.

generated around the periphery of the heated disk must be in thermal wind balance
with the density gradient between convective and ambient regions:

f
∂urim

∂y
∼ ∂g′

∂r
, (4.7)

where y and r are the vertical and radial coordinates, f is the Coriolis parameter
and g′ = g∆ρ/ρ = gβ∆T = Bt/H is the reduced gravity resulting from heating from
the bottom with the buoyancy flux B for a time t and mixing the column over the
depth H . Following Send & Marshall (1995), the width of the rim current Lrim is
RD/(2πRo

∗) based on the g′ = Bt/H at the time considered. Applying thermal wind
balance (4.7) to a vertical shear of urim over a vertical depth of H/2 (our simulation
results show the rim current goes to zero or reverses at mid-depth) yields

urim ∼ 1

2

g′H
fLrim

=
πBt1/2

Hf3/2
. (4.8)

The above scaling (see also Send & Marshall 1995) is the same as that found from
our simulation results (4.6).

The merging of convective cells is evident from the velocity field at t = 200 s
and the along-front wave-like instability appears to grow with time (figure 16). By
t = 200 s, the horizontally axisymmetric flow pattern (figure 10) has fully evolved
into a quasi-two-dimensional irregular vortex field (figure 17). A similar evolution
process from convective rings to convective cells was also observed in the experiments
of Boubnov & Golitsyn (1986). At this stage, the basic determining parameters are
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Figure 16. As figure 14 but at t = 200 s. The maximum velocity magnitude is 7.10 mm s−1.

the Rayleigh flux number Raf = BH4/κ2ν and Taylor number Ta. Since the fluid
confined to the volume defined by the heated disk and the top shelf is all convected,
the total depth H should be used to replace the thermal layer thickness δ in equation
(4.4). The pair of Raf and Ta values (Ta = 4× 105 and Raf = 2× 108) put Run 1 in
the irregular geostrophic turbulence regime among the regimes diagram presented in
Boubnov & Golitsyn (1990). Figures 16 and 17 show the irregular vortex convection
pattern.

4.5. Development of the baroclinic instability

As mentioned before, the rim current is already perturbed by individual vortices by
t = 180 s (figure 14). The horizontal temperature difference between the convective and
ambient regions continuously increases with time as heat is being added constantly
to the system until a steady state is reached within the convective region. The
lateral temperature (density) difference increases with time, and so does the available
potential energy. This available potential energy is the energy source for baroclinic
instability (cf. Jacobs & Ivey 1998). Therefore, with increasing lateral temperature
gradient the rim current undergoes a baroclinic instability, which is triggered by the
individual vortices of the convective flow. A steady state is reached when all the heat
added from the bottom heated disk leaves the convective region through the action
of the baroclinic eddies around the periphery of the convective region. As shown
in the velocity fields (figures 16, 18 and 19), the instability grows in amplitude with
time, while the number of baroclinic eddies formed around the edge of the heated
disk decreases with time. Figure 18 shows that each baroclinic vortex is made up of a
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Figure 17. An iso-thermal surface at t = 200 s for Ω = 0.2 rad s−1, B = 1.57× 10−6 m2 s−3 (Run 1).

number of individual convective cells. This vortex structure was also confirmed by the
experimental study of Maxworthy & Narimousa (1994). Because the convective cells
coalesce with time, the baroclinic eddies reduce in number and grow in amplitude.
All the baroclinic eddies observed are cyclonic eddies. The shapes of the eddies
are somewhat different at different vertical levels, i.e. the eddies at the lower level
have narrow heads (figure 19) and the eddies at the higher level have full round
heads (figure 20). Strong cyclonic eddies are observed above the slope in the initially
quiescent ambient fluid due to the instability of the rim current and the outflow of
the warm convective fluid onto the slope. Unlike in the constant-depth tank case
(Jacobs & Ivey 1999), in which the baroclinic eddies fill almost the entire working
fluid shortly after they formed, the eddies stay close to the shelf break in the present
numerical study and in Jacobs & Ivey’s (1998) experimental study to conserve the
potential vorticity (Nassef 1998).

Continuous temperature time series were obtained at two fixed positions in the
tank, i.e. r/Ri = 0.5, 0.75 and y/H = 0.75. Figure 21 shows that the fluid is well
mixed horizontally within the convective region at level y/H = 0.75 from early on
and therefore there was little horizontal temperature difference between the two radial
locations (r/Ri = 0.5, 0.75 and y/H = 0.75) within the convective region. Figure 22
compares the temperature time history obtained by numerical simulation at two
points with the same radial location with an angular separation of 90◦ (r/Ri = 0.75
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Figure 18. Plan view of the velocity field at t = 240 s and y/H = 0.125 for Ω = 0.2 rad s−1,
B = 1.57 × 10−6 m2 s−3 (Run 1). The maximum velocity magnitude is 8.68 mm s−1. The rim of the
heated disk is marked by the dashed line.

and y/H = 0.75) with the experimental data collected at the same radial location
(r/Ri = 0.75 and y/H = 0.75) by Jacobs & Ivey (1998). The spike between 100 s
and 120 s in the experimental data might be caused by uncertainty in plate heating
in the experiment since there is no apparent reason for the temperature field to
fluctuate in such a manner during that time. Otherwise, the simulation result follows
the trend of the experimental data well. For times beyond 280 s when the baroclinic
instability arises, the differences between the experimental data and simulation results
or between the simulation results at same radius but different angular locations are
simply due to the fact that the experimental probes and the simulation probes were
located at the different parts of the baroclinic eddies at a given time.

By the comparison of the horizontal velocity fields at the same level for two different
rotating rates (Run 1 and Run 4), it is clear that the size of the baroclinic eddies
depends on the rotation rate Ω of the system. The wavelength λ of the baroclinic
eddies is found to be a function of the Rossby deformation radius RD (Jacobs & Ivey
1998), which is given by

RD =

√
g′H
2Ω

, (4.9)

where g′ = gβ∆T is the reduced gravity, β is the thermal expansion coefficient, Ω is
the system rotation rate, and H is the distance between the tank bottom and the top
shelf.
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Figure 19. As figure 18 but at t = 280 s. The maximum velocity magnitude is 10.2 mm s−1.

To obtain the steady-state time τ, Jacobs & Ivey (1998) ran each of their experiments
for a long time and then estimated the time for steady state from the time series
of temperature measurements. Based on all the experiments they performed, they
deduced a steady-state time scale as

τ = (3.1± 0.5)(f/B)1/2Ri. (4.10)

Since we could not afford to run our simulations to a time that is longer than τ,
we used the formula provided by Jacobs & Ivey (1998) (4.10) to estimate τ in our
simulation. For Run 1 and Run 4, the estimated steady-state time is between 260 and
350 s and 370 and 500 s, respectively. Therefore, we run our simulations to 350 s and
500 s for Run 1 and Run 4, respectively. The number of baroclinic eddies observed by
Jacobs & Ivey (1998) was six for Run 1 at the steady-state phase of their experiment.
There appear to be six baroclinic eddies formed around the rim of the heated disk
(figure 23) at t = 350 s for Run 1 as well and the number of eddies was unchanged
since t = 320 s. The average temperature increase within the convective region is
2.4 ◦C at t = 350 s for Run 1, which is within the range of the average temperature
increase (2.56 ◦C± 0.47 ◦C) at the steady-state phase of the corresponding experiment
(Jacobs & Ivey 1998). Thus, a correlation between the wavelength of the baroclinic
eddies and the Rossby deformation radius RD was obtained as λ = 5.5RD for Run 1.
For Run 4, ten baroclinic eddies and an average temperature increase of 2.75 ◦C
within the convective region were found at t = 500 s, which leads to a correlation
of λ = 6.1RD . The correlation constants Cλ found by present study (5.5 and 6.1) fall
within the experimental range of Brickman (1995), who found a constant of 5.7± 0.9.
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Figure 20. As figure 18 but at t = 280 s and y/H = 0.875. The maximum velocity magnitude is
8.09 mm s−1.
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Figure 21. Temperature time history at y/H = 0.75 for Ω = 0.2 rad s−1, B = 1.57× 10−6 m2 s−3

(Run 1).

Our results are in reasonable agreement with the experimental result of Jacobs &
Ivey (1998), who reported a constant of 5.9± 0.3.

There are conflicting results regarding whether the density anomaly between the
convective and ambient regions depends on the system rotation rate. Brickman
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Figure 22. Temperature time history at y/H = 0.75 and r/Ri = 0.75 for Ω = 0.2 rad s−1,
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Figure 23. Plan view of the vertical vorticity field at t = 350 s and y/H = 0.125 for Ω = 0.2 rad s−1,
B = 1.57× 10−6 m2 s−3 (Run 1). The rim of the heated disk is marked by the dashed line.

(1995) and Narimousa (1997) reached the conclusion that the final density anomaly
is independent of the background rotation in a constant depth ocean. However, Jones
& Marshall (1993), Chapman & Gawarkiewicz (1997) and Jacobs & Ivey (1998) all
found such a dependence. When the rotation rate increases, lateral heat exchanges
are more restrained at higher rotation rate as a result of the more restrained radial
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Figure 24. Vertical r.m.s. velocity 〈u′2y 〉1/2 at t = 320 s for Run 1 (Ω = 0.4 rad s−1), Run 4
(Ω = 0.4 rad s−1) and Run 5 (Ω = 0.8 rad s−1): (a) non-dimensionalized with the rotational scale
(B/f)1/2; (b) non-dimensionalized with the non-rotational scale (BH)1/3.

momentum exchanges between the convective and ambient fluid. We found that the
averaged temperature increase within the convective region for Run 4 (Ω = 0.4 rad s−1)
is always higher than that of Run 1 (Ω = 0.2 rad s−1) at the same time. The average
temperature increases within the convective region for Run 1 and Run 4 are 2.4 ◦C at
t = 350 s and 2.75 ◦C at t = 500 s, respectively. Thus the steady-state density anomaly
between the convective and ambient regions can be described by the correlation
g′ = Cg′(Bf)1/2R/H . The correlation constants C ′g found in our simulations for Run 1
and Run 4 are 1.5 and 1.2, respectively. A correlation constant of (1.6 ± 0.2) was
found by the experimental study of Jacobs & Ivey (1998). Thus, our results reasonably
agree with the experiment study of Jacobs & Ivey (1998) and support the dependence
hypothesis.

We think that the discrepancies in the above two correlations constants (Cλ and Cg′)
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Figure 25. Horizontal r.m.s. velocity 〈u′2r + u′2θ 〉1/2 at t = 320 s for Run 1 (Ω = 0.2 rad s−1), Run 4
(Ω = 0.4 rad s−1) and Run 5 (Ω = 0.8 rad s−1): (a) non-dimensionalized with the rotational scale
(B/f)1/2; (b) non-dimensionalized with the non-rotational scale (BH)1/3.

between the simulation and the experimental results are due to the following facts.
First, our simulations were carried out under the same conditions as the experiment
except that a small cylinder of radius Rh = 0.02 m was cut from the numerical
domain to eliminate the coordinate singularity at the centre. Secondly, the averaged
temperature within the convective region in our simulation was obtained by taking
the average of the temperature of all the computational cells within the convective
region, whereas there were only two or four (depends on different experiment runs
in Jacobs & Ivey’s experiments) probes at fixed radial locations within the convective
region in the experiment to measure the temperature. Finally, it is difficult to count
the number of baroclinic waves accurately from the highly irregular flow structures
obtained, whether in the experiment or numerical simulation, especially when the
number of baroclinic waves increased at higher rotation rate.
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The effect of rotation on turbulent convection was also investigated. The turbulent
root mean square (r.m.s.) horizontal velocity 〈u′2r + u′2θ 〉1/2 and vertical velocity 〈u′2y 〉1/2
are obtained at a radial location r/Ri = 0.5 by averaging the velocity components
over the azimuthal direction. Spatial averaging is denoted by 〈 〉 and u′i = ui − 〈ui〉.
Figures 24(a) and 24(b) plot the vertical r.m.s. velocity non-dimensionalized with both
the rotational velocity scale (B/f)1/2 and the non-rotational velocity scale (BH)1/3

as a function of the depth over the heated disk at t = 320 s for Runs 1, 4 and 5.
We found that the vertical velocity scales better with the non-rotational scaling. This
finding is consistent with that of Boubnov & Golitsyn (1990).

Figures 25(a) and 25(b) in which horizontal r.m.s. velocity non-dimensionalized by
the two velocity scales is plotted against the depth show that non-rotational scaling
gives a better description of the convective turbulence for Run 1 (Ω = 0.2 rad s−1)
and Run 4 (Ω = 0.4 rad s−1). With the rotation rate further increased, Run 4 (Ω =
0.4 rad s−1) and Run 5 (Ω = 0.8 rad s−1) scale better with the rotational velocity
scale, suggesting that there is a transition from the buoyancy-flux-controlled flow to
background-rotation-controlled flow. The natural Rossby number gives a measure
of the importance of rotation on the convective process. A critical value of Ro∗
marks the transition from the regime in which buoyancy flux controls the small-
scale convective turbulence to the regime in which background rotation controls the
convective turbulence. From table 1, the natural Rossby number Ro∗ for Runs 1, 4
and 5 are 0.124, 0.044 and 0.015, respectively. Some experimental estimates of the
critical value of Ro∗ vary over almost one order of magnitude. Fernando et al. (1991)
found 0.03 6 Ro∗ 6 0.22, while Coates & Ivey (1997) indicated 0.02 6 Ro∗ 6 0.05.
Our simulation result suggests that 0.015 6 Ro∗ 6 0.044, which agrees with the finding
of Coates & Ivey (1997) but further narrows down the range of the critical value of
Ro∗.

5. Conclusions
This study provides a step-by-step precise description and investigation of the

development of a turbulent rotating convective flow. The present simulations were
able to show for the first time the detailed temporal evolution and rich spatial
structure of the three-dimensional convective flow field on the smallest resolvable
scales. Because the large-eddy simulation is carried out under the same conditions
as an experiment (Jacobs & Ivey 1998), a direct comparison between the simulation
results and the experiment measurements can be made. All of our six simulation runs
(table 1) confirmed Jacobs & Ivey’s finding that the convective overturning time scale
tv is independent of system rotation Ω as tv ∼ (H2/B)1/3 from (4.5). For example,
a heat flux of 300 W m−2 will cause convection to reach 200 m in about 2 hours.
Six baroclinic eddies were reported by Jacobs & Ivey (1998) for their experiment
number 14. About six baroclinic eddies were also observed by our corresponding
simulation Run 1 (figure 23). At the steady state, the average temperature difference
between the convective and the ambient regions obtained from our simulation was
2.4 ◦C for Run 1, which is within the range of the average temperature increase
(2.56 ◦C± 0.47 ◦C) of the corresponding experiment. The wavelength of the baroclinic
eddies at steady state relates to the Rossby deformation radius as λ = CλRD . The
correlation constants Cλ obtained in this study are 5.5 and 6.1 for Run 1 and Run
4, while the range of the correlation constant found by Jacobs & Ivey’s experiments
was 5.9± 0.3. The steady-state density anomaly between the convective and ambient
regions can be described by the correlation g′ = Cg′(Bf)1/2R/H . The correlation
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constants Cg′ obtained is this study are 1.5 and 1.2 for Run 1 and Run 4, respectively.
A correlation constant of (1.6± 0.2) was found by the experimental study of Jacobs
& Ivey (1998).

The objective of this study was not only to compare with but also to complement
the experimental study of Jacobs & Ivey (1998) in investigating the fundamental
mechanisms of a turbulent rotating convective flow. Our three-dimensional numerical
simulations allow us to extract rich information which cannot be easily obtained from
laboratory experiments. The following conclusions are drawn from our simulations
results and are supported qualitatively or quantitatively by various experimental,
theoretical and numerical studies beyond the experimental study of Jacobs & Ivey
(1998).

Initially, a basic static state of heat conduction exists within a thin thermal layer –
the conductive layer. A correct length scale for the thickness of the conductive layer
is δ(t) ∼ √κt. When the temperature increase across the conductive layer exceeds a
critical value, the basic static state becomes unstable and Rayleigh–Bénard convection
is observed through the formation of circular concentric convective rings. The time
for the formation of the convective rings is determined only by the supplied buoyancy
flux B when Taδ < 5× 103 and begins to increase when Taδ > 5× 103. The number
of rings formed depends on the buoyancy flux and the number of rings starts to
increase when Taδ > 5×103. The critical Rayleigh number Rac is essentially constant
(Rac ≈ 7×104) when Taδ < 5×103 and begins to increase with Taδ as Taδ > 5×103.

The horizontally axisymmetric ring pattern eventually breaks down and evolves into
a quasi-two-dimensional vortex field. A rim current develops around the periphery
of the heated disk and is in thermal wind balance with the density gradient between
convective and ambient regions. Our simulation results confirmed that the rim current
velocity scales as Bt1/2/Hf3/2. The rim current later becomes unstable to baroclinic
instability and baroclinic waves are observed. The effect of rotation on turbulent
convection was also investigated. The turbulent velocities are calculated for three
different rotation rates, i.e. Ω = 0.2, 0.4 and 0.8 rad s−1. The vertical r.m.s. velocities
always scale better with the non-rotating velocity scale. The non-rotational velocity
scale can be used to scale the horizontal velocities for lower rotation rates. As
the rotation rate further increases, the horizontal r.m.s. velocities scale better with
the rotational scaling, indicating that there is a transition from the buoyancy-flux-
controlled flow to background-rotation-controlled flow. Our simulation results suggest
that this transition point occurred when the natural Rossby number Ro∗ became
smaller than a critical value between 0.015 and 0.044.

Finally, several questions remain unanswered. The precise nature of the mechanism
that causes the breakdown of the convective rings and the formation of the individual
convective cells is unclear. In the turbulent rotating convective flow, the density
anomaly is thought to depend on the ratio Ri/H of the radius of the heated disk to
the distance between the tank bottom and the shelf. However, it is difficult to create an
aspect ratio R/H larger than 5–8 in the existing rotating convective flow laboratory
setup. Thus, it would be desirable to explore the case for Ri/H > 10 numerically
and to determine the dependence of the density anomaly on the ratio Ri/H in future
work. The effect of changing the bottom slope on the size of the baroclinic eddies
could also be investigated by numerical simulations.
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